Name: _

READ AND FOLLOW ALL DIRECTIONS. CIRCLE YOUR FINAL ANSWERS. SHOW ALL WORK TO RECEIVE FULL CREDIT. NO CALCULATORS.

(20 points) Let f(x) = 4 − x and g(x) = 1 + x²
 (a) Find (f ∘ g)(x).

(b) Find $(g \circ f)(x)$.

- (c) Find $(f \circ f)(4)$.
- (d) Find $(g \circ g)(-1)$.
- 2. (7 points) Determine whether or not each of the given functions is one-to-one. Explain your reasoning.
 - (a) $\{(1,2); (3,5); (5,8); (6,10)\}$

(b) $f(x) = 3x^2 + 2x + 5$

3. (15 points) The function f(x) = ^{2-x}/_{3+x} is one-to-one.
(a) Find its inverse function f⁻¹(x).

(b) Check your answer by verifying that $(f^{-1} \circ f)(x) = x$

4. (20 points) Solve for x: (a) $25^{2x} = 5^{x^2-14} \cdot 25$

(b) $\log_6(x+3) + \log_6(x+4) = 1$

- 5. (8 points) Find the exact value of each of the following expressions.
 (a) log₂ (¹/₈)
 - (b) $2^{\log_2 0.4}$

(c) $\ln\left(e^{\sqrt{2}}\right)$

- $(d) \ \log_6 9 + \log_6 4$
- 6. (20 points) Write each expression as a single logarithm. (a) $-2\log_3 \frac{1}{x} + \frac{1}{3}\log_3 x^3$

(b) $\log(x^2 - 1) - 2\log(x + 1)$

7. (10 points) For an exponential function $f(x) = a^x$, we require a > 0 and $a \neq 1$. Explain why this is so.

8. (5 points) EXTRA CREDIT. Prove that for $M, N > 0, a > 0, a \neq 1, \log_a (M \cdot N) = \log_a M + \log_a N$. You may use any of the other rules for logs, except the one you are trying to prove. (Hint: Your proof should start with $\log_a (M \cdot N) = \ldots$ and follow a string of equalities to arrive at $\ldots = \log_a M + \log_a N$.)