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Motivation

To every finite algebra A, we can associate the decision problem
CSP(A) (a constraint satisfaction problem).

Definition

An idempotent operation is a weak near-unanimity (WNU)
operation if it satisfies

f (y , x , . . . , x) = f (x , y , x , . . . , x) = · · · = f (x , x , . . . , y)

Theorem (Bulatov, Jeavons, Krokhin ’05; Maroti & McKenzie ’08 )

Let A be a finite idempotent algebra. If A has no weak
near-unanimity term (WNU), then CSP(A) is NP-complete.
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Motivation

Algebraic Dichotomy Conjecture

If A has a WNU term, then CSP(A) is tractable.

• A binary term is a WNU iff it is commutative and idempotent.
• An algebra A with an associative binary WNU (semilattice term)
has CSP(A) tractable.
• If the Algebraic Dichotomy Conjecture is true, any weakening of
associativity (with C,I) should also suffice for tractability.
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CI-Groupoids

Definition

Let A = 〈A, ·〉 be a groupoid. We call A a CI-groupoid if · is both
commutative and idempotent. Usually, we write xy for x · y .

The Moufang Law x(y(zy)) ≈ ((xy)z)y is one weakening of
associativity.

Definition

An identity p ≈ q is of Bol-Moufang type if (i) the only operation
in p, q is ·, (ii) the same three variables appear on both sides, in
the same order, (iii) one of the variables appears twice (iv) the
remaining two variables appear only once.
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Identities of Bol-Moufang Type (Phillips and Vojtěchovský)

A xxyz 1 o(o(oo))
B xyxz 2 o((oo)o)
C xyyz 3 (oo)(oo)
D xyzx 4 (o(oo))o
E xyzy 5 ((oo)o)o
F xyzz

Representable as X ij , the identity with:

variable order X
LHS bracketed by i , and RHS bracketed by j .

x(y(zy)) = ((xy)z)y is represented as E 15.

There are 6 ∗ (4 + 3 + 2 + 1) = 60 nontrivial such identities.
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Varieties of Bol-Moufang Type

A variety of is of Bol-Moufang type if it is
axiomatized by one additional identity of Bol-Moufang type.

Two identities of BM type are equivalent if they axiomatize
the same variety of of B-M type.

Phillips and Vojtěchovský showed there are 26 varieties of
quasigroups, and 14 varieties of loops of B-M type.

Q: How many varieties of CI-Groupoids of B-M type are
there? What structure do they have?

Checking pairwise equivalence by hand would take too long!
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Prover9 / Mace4

Prover9 is an automated theorem prover for first-order and
equational logic.

Mace4 searches for finite models and counterexamples.

Input: a set of assumptions and one or more goals.

Output: either proofs of the goals, or counterexample(s)
where the assumptions are true but the goals are false.
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The 8 Varieties of CI-Groupoids of Bol-Moufang Type
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SD(∧) Varieties

Definition

An algebra is congruence meet-semidistributive (SD(∧)) if its
congruence lattice satisfies

(x ∧ y ≈ x ∧ z)⇒ (x ∧ (y ∨ z) ≈ x ∧ y).

A class K is SD(∧) if every algebra in K is SD(∧).

The Universal Algebra Calculator can test if a finite algebra is
SD(∧), or if it has WNU terms.

A finite, idempotent algebra which is SD(∧) is known to have
tractable CSP.
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The Variety S2

Definition

S2 is the variety of CI-groupoids satisfying x(y(xz)) ≈ x((yx)z).

Theorem (KKVW ’13)

A finite idempotent algebra with WNU terms v(x , y , z) and
w(x , y , z , u) such that v(y , x , x) ≈ w(y , x , x , x) is SD(∧).

Theorem

(S2)fin is SD(∧).

Proof.

S2 has WNU terms v(x , y , z) = (xy)(z(xy)) and
w(x , y , z , u) = (xy)(zu) such that v(y , x , x) ≈ w(y , x , x , x).
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The 8 Varieties of CI-Groupoids of Bol-Moufang Type
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The P lonka Sum of Groupoids

Definition

Given

S = 〈S ,∨〉 a semilattice,

{As | s ∈ S} a set of groupoids, and

{φs,t : As → At | s ≤∨ t} a set of “nice” homomorphisms,

the P lonka sum over S of the groupoids {As : s ∈ S} is the
groupoid A with universe

⋃.
s∈S As and multiplication given by:

x1 ∗A x2 = φs1,s(x1) ∗As φs2,s(x2)

where xi ∈ Asi , s = s1 ∨ s2.
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The P lonka Sum of Groupoids
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P lonka’s Theorem

Theorem

Let V be the variety of groupoids defined by Σ ∪ {x ∨ y ≈ x} for
some term x ∨ y and set Σ of regular identities. The following
classes of algebras coincide:

(1) The class Pl(V )of P lonka sums of V -algebras.

(2) The regularization, Ṽ , of V .

(3) The variety of algebras of type ρ defined by the identities Σ
and the following identities:

x ∨ x ≈ x (P1)

(x ∨ y) ∨ z ≈ x ∨ (y ∨ z) (P2)

x ∨ (y ∨ z) ≈ x ∨ (z ∨ y) (P3)

x ∨ (y ∗ z) ≈ x ∨ y ∨ z (P4)

(x ∗ y) ∨ z ≈ (x ∨ z) ∗ (y ∨ z) (P5)
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Squags and T1

Definition

T1 is the variety of CI-groupoids satisfying x(x(yz)) ≈ (x(xy))z .

Definition

The variety Sq of Steiner quasigroups (squags) is the variety of
CI-groupoids satisfying y(xy) ≈ x .

Theorem

T1 is the regularization of the variety of squags.

Proof.

Let x ∨ y ≈ y(xy), Σ = {C , I , x(x(yz)) ≈ (x(xy))z}. The squag
identity (x ∨ y = x) implies the T1 identity, so Sq ⊆ T1.
In T1, the term x ∨ y satisfies (P1)–(P5).
Thus, by P lonka’s Theorem, T1 = S̃q = Pl(Sq).

Failing (ISU) CSP for CI-Groupoids



CID and CIE Groupoids

Definition

A groupoid is distributive (D) if it satisfies x(yz) ≈ (xy)(xz). It is
entropic (E) if it satisfies (xy)(zw) ≈ (xz)(yw).

• Ježek, Kepka, and Němec: “the deepest non-associative theory
within the framework of groupoids” is the theory of distributive
groupoids.

Theorem

Every finite CID-groupoid (and hence CIE-groupoid) is a P lonka
sum of quasigroups.
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Further Work

Paper: C. Bergman and D. Failing, Commutative, idempotent
groupoids and the constraint satisfaction problem.

Submitted to A.U., preprint available at
http://dfailing.public.iastate.edu

More structure of 2SL, X , S2 and S1, T2 and T1.

We stopped when the CSP was settled for each variety.

Further generalizations?

Generalized Bol-Moufang CI-groupoids are either Bol-Moufang
type or distributive.
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Thanks!


