Structure Theory of Commutative, Idempotent Groupoids of Bol-Moufang Type

David Failing

Department of Mathematics Iowa State University http://dfailing.public.iastate.edu

AMS Spring Central Section Meeting April 28, 2013 To every finite algebra \mathbf{A} , we can associate the decision problem CSP(\mathbf{A}) (a *constraint satisfaction problem*).

Definition

An idempotent operation is a **weak near-unanimity (WNU)** operation if it satisfies

$$f(y,x,\ldots,x)=f(x,y,x,\ldots,x)=\cdots=f(x,x,\ldots,y)$$

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08)

Let **A** be a finite idempotent algebra. If **A** has no weak near-unanimity term (WNU), then CSP(**A**) is NP-complete.

Algebraic Dichotomy Conjecture

If **A** has a WNU term, then $CSP(\mathbf{A})$ is tractable.

- A binary term is a WNU iff it is commutative and idempotent.
- An algebra \mathbf{A} with an associative binary WNU (semilattice term) has CSP(\mathbf{A}) tractable.
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a *Cl-groupoid* if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

The Moufang Law $x(y(zy)) \approx ((xy)z)y$ is one weakening of associativity.

Definition

An identity $p \approx q$ is of *Bol-Moufang type* if (i) the only operation in p, q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice (iv) the remaining two variables appear only once.

Identities of Bol-Moufang Type (Phillips and Vojtěchovský)

- Representable as Xij, the identity with:
 - variable order X
 - LHS bracketed by *i*, and RHS bracketed by *j*.
- x(y(zy)) = ((xy)z)y is represented as E15.
- There are 6 * (4 + 3 + 2 + 1) = 60 nontrivial such identities.

- A variety of ______ is of *Bol-Moufang type* if it is axiomatized by one additional identity of Bol-Moufang type.
- Two identities of BM type are *equivalent* if they axiomatize the same variety of ______ of B-M type.
- Phillips and Vojtěchovský showed there are 26 varieties of quasigroups, and 14 varieties of loops of B-M type.
- Q: How many varieties of CI-Groupoids of B-M type are there? What structure do they have?
 - Checking pairwise equivalence by hand would take too long!

- **Prover9** is an automated theorem prover for first-order and *equational logic*.
- Mace4 searches for finite models and *counterexamples*.
- Input: a set of *assumptions* and one or more *goals*.
- **Output:** either *proofs* of the goals, or *counterexample(s)* where the assumptions are true but the goals are false.

An algebra is *congruence meet-semidistributive* $(SD(\land))$ if its congruence lattice satisfies

$$(x \wedge y \approx x \wedge z) \Rightarrow (x \wedge (y \vee z) \approx x \wedge y).$$

A class \mathcal{K} is SD(\wedge) if every algebra in \mathcal{K} is SD(\wedge).

The Universal Algebra Calculator can test if a finite algebra is $SD(\wedge)$, or if it has WNU terms.

A finite, idempotent algebra which is SD(\land) is known to have tractable CSP.

 S_2 is the variety of CI-groupoids satisfying $x(y(xz)) \approx x((yx)z)$.

Theorem (KKVW '13)

A finite idempotent algebra with WNU terms v(x, y, z) and w(x, y, z, u) such that $v(y, x, x) \approx w(y, x, x, x)$ is SD(\wedge).

Theorem

 $(S_2)_{fin}$ is $SD(\wedge)$.

Proof.

 \mathcal{S}_2 has WNU terms v(x, y, z) = (xy)(z(xy)) and w(x, y, z, u) = (xy)(zu) such that $v(y, x, x) \approx w(y, x, x, x)$.

Given

- $\mathbf{S} = \langle S, \lor \rangle$ a semilattice,
- $\{ \mathsf{A}_s \mid s \in S \}$ a set of groupoids, and
- $\{\phi_{s,t}: \mathbf{A}_s \to \mathbf{A}_t \mid s \leq_{\lor} t\}$ a set of "nice" homomorphisms,

the **Płonka sum** over *S* of the groupoids $\{\mathbf{A}_s : s \in S\}$ is the groupoid **A** with universe $\bigcup_{s \in S} A_s$ and multiplication given by:

$$x_1 *^{\mathbf{A}} x_2 = \phi_{s_1,s}(x_1) *^{\mathbf{A}_s} \phi_{s_2,s}(x_2)$$

where $x_i \in \mathbf{A}_{s_i}$, $s = s_1 \lor s_2$.

The Płonka Sum of Groupoids

Theorem

Let \mathcal{V} be the variety of groupoids defined by $\Sigma \cup \{x \lor y \approx x\}$ for some term $x \lor y$ and set Σ of regular identities. The following classes of algebras coincide:

- (1) The class $\mathbf{PI}(\mathcal{V})$ of Płonka sums of \mathcal{V} -algebras.
- (2) The regularization, $\widetilde{\mathcal{V}}$, of \mathcal{V} .
- (3) The variety of algebras of type ρ defined by the identities Σ and the following identities:

$$x \lor x \approx x$$
 (P1)

$$(x \lor y) \lor z \approx x \lor (y \lor z)$$
(P2)

$$x \lor (y \lor z) \approx x \lor (z \lor y) \tag{P3}$$

$$x \lor (y * z) \approx x \lor y \lor z \tag{P4}$$

$$(x * y) \lor z \approx (x \lor z) * (y \lor z)$$
 (P5)

 \mathcal{T}_1 is the variety of CI-groupoids satisfying $x(x(yz)) \approx (x(xy))z$.

Definition

The variety Sq of *Steiner quasigroups (squags)* is the variety of CI-groupoids satisfying $y(xy) \approx x$.

Theorem

 \mathcal{T}_1 is the regularization of the variety of squags.

Proof.

Let $x \lor y \approx y(xy)$, $\Sigma = \{C, I, x(x(yz)) \approx (x(xy))z\}$. The squag identity $(x \lor y = x)$ implies the \mathcal{T}_1 identity, so $\mathcal{S}_q \subseteq \mathcal{T}_1$. In \mathcal{T}_1 , the term $x \lor y$ satisfies (P1)–(P5). Thus, by Płonka's Theorem, $\mathcal{T}_1 = \widetilde{\mathcal{S}_q} = \mathbf{Pl}(\mathcal{S}_q)$.

A groupoid is *distributive* (D) if it satisfies $x(yz) \approx (xy)(xz)$. It is *entropic* (E) if it satisfies $(xy)(zw) \approx (xz)(yw)$.

• Ježek, Kepka, and Němec: "the deepest non-associative theory within the framework of groupoids" is the theory of distributive groupoids.

Theorem

Every finite CID-groupoid (and hence CIE-groupoid) is a Płonka sum of quasigroups.

- Paper: C. Bergman and D. Failing, *Commutative, idempotent* groupoids and the constraint satisfaction problem.
 - Submitted to A.U., preprint available at http://dfailing.public.iastate.edu
- More structure of 2SL, X, S_2 and S_1 , T_2 and T_1 .
 - We stopped when the CSP was settled for each variety.
- Further generalizations?
 - Generalized Bol-Moufang Cl-groupoids are either Bol-Moufang type or distributive.

Thanks!