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Introduction

n Long-range order is a characterization of a 
system of objects which exhibits local 
correlation.

n One such system arises in substitution 
sequences which generate infinite words.

n We explore properties of such systems.



Substitutions

n A substitution or morphism is a function 
which maps σ : A* → A* where: 
n the alphabet A is a finite set of symbols
n A* is a set of nonempty strings of characters 

over A, satisfying σ(xy) = σ(x) σ(y).



Example 1

n Let σ be a substitution on the finite 
alphabet A={a,b}, defined σ(a) = ab, σ(b) 
= a.

n σ(a)   =  ab
σ2(a)  = σ(ab) = aba
σ3(a)  = σ(aba) = abaab

n σn(a) approaches abaababaabaabab…, the 
Fibonacci word.



The (Infinite) Fibonnaci Word

n From previous example, the Fibonacci 
word is abaababaabaabab…

n σn(a) = σn-1(a) σn-2(a) 

n | σn(a) | = fn , the n-th Fibonacci number.



The Fibonacci Base

n Recall fn = fn-1 + fn-2 where f0=f1=1
n fn = {1, 2, 3, 5, 8, 13, 21, 34,…}
n We define the Fibonacci base such that 

the places are successive terms from the 
Fibonacci sequence.



Sequence Bases

n Take any sequence a0, a1, a2… We define 
a sequence base to be an alternative 
numeration system in which we substitute 
the terms of the sequence for the places.

n Issues of multiple representations of the 
integers.



Greedy Expansion

n The Greedy Algorithm for integer 
representation is as follows:

1. Choose some integer n and an integer 
sequence an.

2. Find the greatest integer j less than n such 
that j is a member of some integer 
sequence.



Greedy Expansion

n (Continued)
3. Repeat above, replacing n with n-j until the 

chosen j = n.
4. The chosen integer n may be written as the 

sum of all j chosen in step 2.



Example 2

n Represent n=24 as a Greedy Expansion 
of the Fibonacci sequence 
an={1,2,3,5,8,…}

1. 21 is in a, and 21 is less than 24.
2. 24-21=3, and 3 is in a.
3. 24=21+3, and in the Fibonacci base,

24=1*21+1*3=1 0 0 0 1 0 0 



Lazy Expansion

n The Lazy Algorithm also allows us to 
represent integers in a sequence base 
uniquely, but requires that the integer 
sequence chosen be defined by a linear 
combination of the previous two terms.



Lazy Expansion

n (Continued)
1. Choose some integer n.
2. Find the Greedy Expansion of n, using some 

recursive sequence a.
3. For a=A*an-1+B*an-2, replace all 1 0 0 blocks 

in the Greedy Expansion with 0 A B blocks.
4. Repeat 3 until no 1 0 0 blocks remain.



Example 3

n Recall the Greedy Expansion of 24 in the 
Fibonacci base, 24 = 1 0 0 0 1 0 0.

1. Recall the Fibonacci sequence, defined fn = 
fn-1 + fn-2.

2. Replace all 1 0 0 blocks with 0 1 1 blocks, 
repeating until no 1 0 0 blocks remain.



Example 3 (Continued)

3. 24 = 1 0 0 0 1 0 0
= 0 1 1 0 0 1 1
= 0 1 0 1 1 1 1

The Lazy Expansion of 24 in the Fibonacci base 
is 1 0 1 1 1 1.



The Kimberling Sequence

n Define S to be the self-generating set of 
positive integers determined by the finite 
generating rules:
1. 1 is in S;
2. If x is in S, then 2x and 4x-1 are in S;
3. Nothing else belongs to S.

S = {1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, …}



Analysis of the Kimberling 
Sequence

T= S - 1 = {0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, …}

n T is also self-generating.
1. 0 is in T;
2. If x is in T, then 2x + 1 and 4x+2 are in T;
3. Nothing else belongs to T.



Further Analysis

n We also note that T, with the first term 
removed, and reduced mod 2 is the infinite 
Fibonacci word.

n T is also the set of integers whose base 2 
representations contain no 0 0 block, or the 
set of valid Lazy Fibonacci Representations.



Generalized Fibonacci Morphisms

n Fibonacci Morphism: σ(0) = 0 1, σ(1) = 0 
n Generalization: σ(0) = 0n1, σ(1) = 0. 

We study positive values of n, as n=0 
yields an oscillating, non-growing 
morphism.



Example 4: n=2

n σ(0) = 0 0 1, σ(1) = 0.
1. | σn(a) | ={1, 3, 7, 17, 41,…}, the sequence 

an=2an-1+an-2
2. Write out the Lazy representations of the 

integers using the recurrence relation 
determined above.



Example 4 (Continued)

n Note the Lazy 
representations using 
{1,3, 7, 17, …} 
include no 0 0 or 0 1 
blocks, and naturally 
represent integers in 
base 3.

0 -> 0 7 - > 2 1
1 - > 1 8 - > 2 2
2 - > 2 9 - > 1 0 2
3 - > 1 0 10- > 1 1 0
4 - > 1 1 11- > 1 1 1
5 - > 1 2 12- > 1 1 2
6 - > 2 0 13- > 1 2 0



Example 4 (Continued)

3. Generate the set T, the integers whose base 
3 expansions do not contain a 00 or 01 
block.
T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, …}

4. Omit the first term of T, and the remaining 
sequence reduced mod 3, then mod 2 is the 
infinite word produced by the given 
morphism 0 -> 0 0 1, 1 -> 0.



Conjecture

n For n greater than or equal to 1:
1. Generate a few iterations of σ(0) = 0n1, σ(1) 

= 0. Determine the recurrence relation 
an=A*an-1+B*an-2 which represents the 
lengths of successive iterations.

2. Write out the Lazy representations of the 
integers using an defined above, and look for 
missing blocks.



Conjecture

n (Continued)
3. Generate the set of integers whose base n

expansions do not contain the blocks found 
in step 2. This is the set T.

4. Omit the first term of T, then reduce the set 
T mod (n+1), mod (n), … mod 2.

5. We arrive at our initial infinite word.



Further Research

n We believe the set S=T+1 may be self-
generating in a manner similar to the 
Kimberling sequence.

n For n greater than 2, S reduced 
repetitively in the manner of our 
conjecture also generates our infinite 
word.



Further Research

n We have begun work similar to 
Kimberling, beginning with self-
generating sets and finite generating 
rules.

n We hope to work from self-generating 
sets to morphic sequences.



Finite Generating Functions

n For any self generating set S where:
1. 1 is in S;
2. F, a finite family of finite generating 

functions of  form akx-b, where b is between 
0 and ak

3. If x is in S, and some finite rule f is in the 
family of generating functions, then f(x) is in 
S.



Finite Generating Functions

n For any positive integer a, it is supposed 
that S mod e may be generated by a 
substitution.

n We analyze the tree structure of the 
generating functions, and search for 
repetitive sub-tree structures to 
determine our substitution.
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